Abstract

A novel boundary integral approach for the recovery of overhanging (or not) rotational water waves (with constant vorticity) from pressure measurements at the bottom is presented. The method is based on the Cauchy integral formula and on an Eulerian–Lagrangian formalism to accommodate overturning free surfaces. This approach eliminates the need to introduce a priori a special basis of functions, thus providing a general means of fitting the pressure data and, consequently, recovering the free surface. The effectiveness and accuracy of the method are demonstrated through numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.