Abstract

The two-Hilbert-space theory of scattering is reviewed with particular reference to its application to nonrelativistic multichannel quantum- mechanical scattering theory. In Part I the abstract assumptions of the theory are collected, transition operators (both on- and off-energy-shell) are defined, the dynamical equations that determine the off-shell transition operators are presented and their real-energy limits examined, and the convergence of sequences of approximate transition operators is established. A section on how to incorporate group symmetries into the formalism reports new work. The material of Part I is relevant to a variety of both classical and quantum scattering systems. In Part II attention is directed specifically to N-body nonrelativistic quantum scattering systems in which the particles interact via short-range pair potentials. A method of constructing approximate transition operators is presented and shown to satisfy all the abstract assumptions of Part I. The dynamical equations that determine the half-on-shell approximate transition operators are shown to be coupled one-dimensional integral equations that have compact kernels and unique solutions when considered as operators on a Hilbert space of Holder continuous functions. Moreover, the on-shell parts of those approximate transition amplitudes are shown to converge to the exact on-shell amplitudes as the order of the approximation increases. Detailed formulas for the kernels of the integral equations are written down for systems of particles that are distinguishable and for systems containing identical particles. Finally, some important open problems are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.