Abstract
A four-transverse-field formulation for a lossless Hermitian tensor material was introduced previously for an arbitrary direction of applied bias field. This method is extended here to include loss, which is critical in modelling experimental devices and which causes variational functionals for gyrotropic waveguides to become non-Hermitian. The functional is developed from Maxwell's equations before demonstrating its stationary properties at the boundary value problem solution. Using the finite element method, the functional is implemented and then validated against various waveguide structures. For the first time, the E-t-H-t formulation has been explicitly applied to lossy gyroelectric waveguide cross-sections. This method has important implications for the study and design of future phase shift and control components used in sub-millimeter wave and terahertz systems. Copyright (c) 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.