Abstract

We prove a general form of Chebyshev type inequality for generalized upper Sugeno integral in the form of necessary and sufficient condition. A key role in our considerations is played by the class of m-positively dependent functions which includes comonotone functions as a proper subclass. As a consequence, we state an equivalent condition for Chebyshev type inequality to be true for all comonotone functions and any monotone measure. Our results generalize many others obtained in the framework of q-integral, seminormed fuzzy integral and Sugeno integral on the real half-line. Some further consequences of these results are obtained, among others Chebyshev type inequality for any functions. We also point out some flaws in existing results and provide their improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.