Abstract

The significance of the new theory of metal reduction from ores has been demonstrated. It was shown that all the existing versions of the theory are based on atomic-molecular representations of the early 20-th century where reduction is considered as a process of exchange of oxygen atoms between a reducing agent and oxide molecules. These representations do not take into account changes in the crystalline structure of oxides and in the state of a gas medium with change in temperature and pressure. The attention here was drawn to the absence of molecules in oxides, and atoms in metals. Inconsistency of a number of the theory conclusions with practice of reduction during operation of plants was revealed. Based on the assumptions of redox reactions as processes of exchange of reagents by the valence electrons, defective ionic structure of real crystals, changes in the state of the gaseous medium during heating and pressure increase using some statements of quantum mechanics on the distribution of electrons in solids, the authors have developed electron version of the reduction theory. This theory is based on the unity of the anionic sublattice of all crystals of the oxide phase and the collective electronic system of all valence electrons of metal cations in oxide. It is shown that in the reduction plants, due to the thermal ionization of gases and thermionic emission from the surface of the heated bodies, the gas medium is plasma. The presence of charged particles in the plasma ensures their interaction at a considerable distance and the course of chemical processes in the kinetic mode. The gaseous reduction products are removed from the reaction zone with exhaust gases, and the electrons released in the plasma are absorbed by the oxide surface and exist in the oxide together with the anionic vacancies that arise when oxygen is removed. In high-grade ores the vacancies merge and disappear on the oxide surface, and the free electrons of the vacancies combine the nearest cations with a metal bond to form a metal shell which later turns into carbides. The formation of carbide shells blocks the oxide surface and stops reduction. When temperature rises and the shells melt the reduction process resumes. Therefore, the carbon-thermal reduction produces cast iron and high-carbon ferroalloys. In low-grade and complex ores the vacancies are scattered in the oxide volume along the total anionic sublattice forming solution of vacancies and free electrons. The vacancies merge and disappear in places of increased concentration of cations where the Fermi level of atoms is less than the chemical potential of the free electrons. In the formed anionic void the free electrons rearrange metal cations with low Fermi energy and bind them with a metal bond bypassing the stage of atom formation. Crystal growth in an anionic void occurs without resistance from the parent oxide phase.

Highlights

  • It was shown that all the existing versions of the theory are based on atomic-molecular representations of the early 20-th century where reduction is considered as a process of exchange of oxygen atoms between a reducing agent and oxide molecules

  • These representations do not take into account changes in the crystalline structure of oxides and in the state of a gas medium with change in temperature and pressure

  • The attention here was drawn to the absence of molecules in oxides, and atoms in metals

Read more

Summary

Необходимость разработки электронной теории

Базовые положения существующей в настоящее время теории восстановления металлов разрабатывались в конце XIX и первой половине XX в. применительно к процессу получения чугуна. А поскольку исследования диффузии при контактном взаимодействии не подтвердили перемещения атомов или ионов в кристаллической решетке твердых тел с наблюдаемой скоростью восстановления, то адсорбционно-автокаталитическая теория газового восстановления обычно дополняется диффузионно-кинетической теорией С.Т. Что повышенное давление газов в печи в соответствии с принципом Ле-Шателье должно препятствовать ключевым реакциям восстановления – образованию и регенерации монооксида углерода (и водорода), так как при этом увеличивается число газовых молей. В работах [14 – 16] роль переносчиков реагентов через газовую фазу отводят парам восстанавливаемых оксидов или парам образующихся в результате их диссоциации субоксидов, которые переносят восстанавливаемый компонент на поверхность твердого восстановителя, где развивается контактное взаимодействие с образованием карбидов восстанавливаемых металлов («газо-карбидный» вариант теории). Целью данной работы является обобщение сведений о структуре твердых тел и происходящих в них изменениях при нагреве в условиях, существующих в восстановительных агрегатах, и теоретических положений о восстановительных процессах в рамках развиваемой авторами электронной теории восстановления [28 – 30]

Ионная и электронная структура оксидов в условиях восстановления
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.