Abstract

For a family of differential equations with infinite delay, we give sufficient conditions for the global asymptotic, and global exponential stability of an equilibrium point. This family includes most of the delayed models of neural networks of Cohen–Grossberg type, with both bounded and unbounded distributed delay, for which general asymptotic and exponential stability criteria are derived. As illustrations, the results are applied to several concrete models studied in the literature, and a comparison of results is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.