Abstract

In an attempt to model occupational and environmental Mn exposures and their possible interaction, young male Wistar rats were exposed to Mn by oral administration in dissolved form (MnCl2 ·4H2O, 14.84 and 59.36 mg/kg b.w.) and by intratracheal application of MnO2 nanoparticles (2.63 mg/kg b.w.). After 3 and 6 weeks oral, or 3 weeks oral plus 3 weeks intratracheal, exposure, general toxicological, and electrophysiological tests were done. Body weight gain was significantly reduced after 6 and 3 plus 3 weeks exposure, but the effect of the latter on the pace of weight gain was stronger. Organ weights signalized systemic stress and effect on lungs. Changes in evoked electrophysiological responses (cortical sensory evoked potential and nerve action potential) indicated that the 3 plus 3 weeks combined exposure caused equal or higher changes in the latency of these responses than 6 weeks of exposure, although the calculated summed Mn dose in the former case was lower. The results showed the importance of the physicochemical form of Mn in determining the toxic outcome, and suggested that neurofunctional markers of Mn action may indicate the human health effect better than conventional blood Mn measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.