Abstract

Hepatocyte growth factor plays a significant role in angiogenesis, anti-apoptosis, and anti-transforming growth factor-beta1-mediated fibrosis in several organs. In this study, we investigated the effect of transfection of the hepatocyte growth factor gene in attenuation of cardiac remodeling in the hypertrophied heart. Two weeks after banding the ascending aorta of male Sprague-Dawley rats, a hemagglutinating virus of Japan-liposome complex with (H group) or without (C group) human hepatocyte growth factor cDNA was transfected into the left ventricle wall by direct injection. The hepatocyte growth factor, c-Met, and transforming growth factor-beta1 mRNA levels in the left ventricle were then analyzed by real-time quantitative reverse-transcriptase polymerase chain reaction. Two weeks after transfection, the expression of transforming growth factor-beta1 mRNA was significantly attenuated in the H group compared with the C group (P < .01). Myocardial collagen content after 4 weeks of banding was significantly lower in the H group (5.0 +/- 0.6 mg/g tissue) than in the C group (7.4 +/- 0.5 mg/g tissue, P < .01). Left ventricular diastolic function (E/A ratios quantified by Doppler echocardiography) showed a significant increase in the H group (1.9 +/- 0.1) compared with the C group (1.1 +/- 0.1, P < .01). Our results demonstrated that gene transfection of hepatocyte growth factor attenuated left ventricular diastolic dysfunction and cardiac fibrosis in association with a decrease in transforming growth factor-beta1 in the rat heart subjected to pressure overload. Thus, the transfection of the hepatocyte growth factor gene into the hypertrophied heart may be a strategy for the hypertrophied and failing heart even for cardiac surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.