Abstract

BackgroundAcute kidney injury (AKI) is a common complication in sepsis. However, the trajectories of sepsis-induced AKI and their transcriptional profiles are not well characterized.MethodsSepsis patients admitted to centres participating in Chinese Multi-omics Advances In Sepsis (CMAISE) from November 2020 to December 2021 were enrolled, and gene expression in peripheral blood mononuclear cells was measured on Day 1. The renal function trajectory was measured by the renal component of the SOFA score (SOFArenal) on Days 1 and 3. Transcriptional profiles on Day 1 were compared between these renal function trajectories, and a support vector machine (SVM) was developed to distinguish transient from persistent AKI.ResultsA total of 172 sepsis patients were enrolled during the study period. The renal function trajectory was classified into four types: non-AKI (SOFArenal = 0 on Days 1 and 3, n = 50), persistent AKI (SOFArenal > 0 on Days 1 and 3, n = 62), transient AKI (SOFArenal > 0 on Day 1 and SOFArenal = 0 on Day 3, n = 50) and worsening AKI (SOFArenal = 0 on Days 1 and SOFArenal > 0 on Day 3, n = 10). The persistent AKI group showed severe organ dysfunction and prolonged requirements for organ support. The worsening AKI group showed the least organ dysfunction on day 1 but had higher serum lactate and prolonged use of vasopressors than the non-AKI and transient AKI groups. There were 2091 upregulated and 1,902 downregulated genes (adjusted p < 0.05) between the persistent and transient AKI groups, with enrichment in the plasma membrane complex, receptor complex, and T-cell receptor complex. A 43-gene SVM model was developed using the genetic algorithm, which showed significantly greater performance predicting persistent AKI than the model based on clinical variables in a holdout subset (AUC: 0.948 [0.912, 0.984] vs. 0.739 [0.648, 0.830]; p < 0.01 for Delong’s test).ConclusionsOur study identified four subtypes of sepsis-induced AKI based on kidney injury trajectories. The landscape of host response aberrations across these subtypes was characterized. An SVM model based on a gene signature was developed to predict renal function trajectories, and showed better performance than the clinical variable-based model. Future studies are warranted to validate the gene model in distinguishing persistent from transient AKI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.