Abstract

Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.

Highlights

  • Recombinant proteins, such as antibodies, can be secreted to the extracellular medium allowing for a purification step much simpler than if they were retained into the cell

  • We selected the target sites for the presence of a restriction site to facilitate the identification of mutations by an restriction fragment length polymorphism (RFLP) assay

  • We showed that CRISPR/Cas9 can be used as a powerful tool for engineering the N. tabacum Bright yellow 2 (BY-2) genome

Read more

Summary

Introduction

BY-2 cells have been shown to be able to produce recombinant proteins, and represent an alternative host in the molecular farming field (De Muynck et al, 2010; Schillberg et al, 2013). Cell cultures are grown in contained bioreactors and have the advantage of animal and microbial cultures regarding the process control. Recombinant proteins, such as antibodies, can be secreted to the extracellular medium allowing for a purification step much simpler than if they were retained into the cell.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.