Abstract

Molecular mechanisms of plant-pathogen interaction have been studied thoroughly because of its importance for crop production and food supply. This knowledge is a starting point in order to identify new and specific resistance genes by detecting similar expression patterns. Here we evaluate the usefulness of clustering and data-mining methods to group together known plant resistance genes based on expression profiles. We conduct clustering separately on P.infestans inoculated and not-inoculated tomatoes and conclude that conducting the analysis separately is important for each condition, because grouping is different reflecting a characteristic behavior of resistance genes in presence of the pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.