Abstract

Primary systemic therapy (PST) with gemcitabine (G), epirubicin (E), and docetaxel (Doc) has resulted in a pathologic complete response (pCR) in 26% of primary breast cancer patients. This study was aimed at the identification of a gene expression signature in diagnostic core biopsy tissue samples that predicts pCR. Core biopsy samples from patients with operable primary breast cancer, T2-4N0-2M0, enrolled onto two phase I and II trials evaluating GEDoc (n = 48) and GE sequentially followed by Doc (GEsDoc; n = 52) as PST were snap frozen and subjected to RNA expression profiling. A signature predicting pCR was discovered in the training set (GEsDoc) applying a support vector machine algorithm, and performance of this classifier was validated on the independent test set (GEDoc) by receiver operator characteristics analysis. We identified a signature consisting of 512 genes, which was enriched in genes involved in transforming growth factor beta and RAS-mediated signaling pathways, that predicts pCR with a sensitivity of 78%, a specificity of 90%, and an overall accuracy of 88% (95% CI, 75% to 95%). Apart from our signature, only HER2 overexpression was an independent predictor of pCR in multivariate analysis. In conclusion, our gene expression signature allows prediction of pCR to PST containing G, E, and Doc with unprecedented high overall accuracy and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.