Abstract

BackgroundA unique feature of fish is that new muscle fibres continue to be produced throughout much of the life cycle; a process termed muscle hyperplasia. In trout, this process begins in the late embryo stage and occurs in both a discrete, continuous layer at the surface of the primary myotome (stratified hyperplasia) and between existing muscle fibres throughout the myotome (mosaic hyperplasia). In post-larval stages, muscle hyperplasia is only of the mosaic type and persists until 40% of the maximum body length is reached. To characterise the genetic basis of myotube neoformation in trout, we combined laser capture microdissection and microarray analysis to compare the transcriptome of hyperplastic regions of the late embryo myotome with that of adult myotomal muscle, which displays only limited hyperplasia.ResultsGene expression was analysed using Agilent trout oligo microarrays. Our analysis identified more than 6800 transcripts that were significantly up-regulated in the superficial hyperplastic zones of the late embryonic myotome compared to adult myotomal muscle. In addition to Pax3, Pax7 and the fundamental myogenic basic helix-loop-helix regulators, we identified a large set of up-regulated transcriptional factors, including Myc paralogs, members of Hes family and many homeobox-containing transcriptional regulators. Other cell-autonomous regulators overexpressed in hyperplastic zones included a large set of cell surface proteins belonging to the Ig superfamily. Among the secreted molecules found to be overexpressed in hyperplastic areas, we noted growth factors as well as signalling molecules. A novel finding in our study is that many genes that regulate planar cell polarity (PCP) were overexpressed in superficial hyperplastic zones, suggesting that the PCP pathway is involved in the oriented elongation of the neofibres.ConclusionThe results obtained in this study provide a valuable resource for further analysis of novel genes potentially involved in hyperplastic muscle growth in fish. Ultimately, this study could yield insights into particular genes, pathways or cellular processes that may stimulate muscle regeneration in other vertebrates.

Highlights

  • A unique feature of fish is that new muscle fibres continue to be produced throughout much of the life cycle; a process termed muscle hyperplasia

  • In the second phase of neomyogenesis, termed mosaic hyperplasia, new muscle fibres are formed on the surface of existing muscle fibres throughout the entire myotome, producing the typical mosaic appearance observed in a muscle cross section

  • Muscle hyperplasia in the late trout embryo The zones of myotube neoformation in the trout late embryonic myotome were visualised by in situ hybridisation of the transcript encoding myogenin, a transcriptional activator associated with the differentiation of myogenic cells

Read more

Summary

Introduction

A unique feature of fish is that new muscle fibres continue to be produced throughout much of the life cycle; a process termed muscle hyperplasia In trout, this process begins in the late embryo stage and occurs in both a discrete, continuous layer at the surface of the primary myotome (stratified hyperplasia) and between existing muscle fibres throughout the myotome (mosaic hyperplasia). In the first phase, which takes place in the late embryo stage and/or in larvae, new fibres are formed at the surface of the primary myotome This regionalised phase of myogenesis, termed stratified hyperplasia, results from the differentiation of myogenic precursor cells that derive from the dermomyotome-like epithelium that surrounds the myotome [3,4,5,6]. In this study we have combined laser capture microdissection [12] with microarray analysis to compare the transcriptome of hyperplastic subdomains of the late embryo myotome with that of adult myotomal muscle, which displays only limited muscle hyperplasia

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.