Abstract
Destruxin A (DA) is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE) profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO) terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR). Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.
Highlights
Entomopathogenic fungi, such as Metarhizium anisopliae and Beauveria bassiana [1,2], are very important natural factors for insect control
The alignment with reference transcriptome and reference genome showed that unique match ranged from 52.68% to 58.32%, and from 72.59% to 73.08%, respectively, which is the most critical subset of digital gene expression (DGE) libraries to identify a transcript precisely (Table 1)
The results showed that the number of detected genes was increasing as the number of reads was increasing
Summary
Entomopathogenic fungi, such as Metarhizium anisopliae and Beauveria bassiana [1,2], are very important natural factors for insect control. Destruxins were firstly isolated from M. anisopliae, and they are important virulence factors which accelerate the death of infected insects [4,10,11]. The molecular mechanisms of destruxins as insecticide have not been elucidated yet. 39 destruxins analogues have been isolated from M. anisopliae and other fungal species [13,14,15]. The common analogues, Destruxin A (DA), Destruxins B (DB) and Destruxins (DE) exhibit a substantial insecticidal activities against many species of pests such as Plutella xylostella, Spodoptera litura, Manduca sexta and Pieris brassicae [16,17,18], etc
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.