Abstract

BackgroundRust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology.ResultsTo support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs.ConclusionsThe current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence.

Highlights

  • Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry

  • Thereafter, a microscopically visible haustorial interface surrounding the mature feeding structure, is produced, likely made up of both fungal and host material [4]. This interface is critical in governing protein and metabolite traffic [5,6] since haustoria are thought to secrete a suite of proteins, some of which are aimed at suppressing host defence responses that may be triggered by the fungus when it penetrates the plant cell wall or at establishing the feeding interaction

  • CDNA library PT029 was constructed and the pycniospore RNA resulted in library PT030

Read more

Summary

Introduction

Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Puccinia triticina (Pt) has a complex life cycle which includes five different spore types and two hosts: wheat (Triticum aestivum L.) and meadow rue (Thalictrum speciosissimum L.) The latter plant is the so-called alternate host on which the fungus completes its sexual stage [1,2,3]. Thereafter, a microscopically visible haustorial interface surrounding the mature feeding structure, is produced, likely made up of both fungal and host material [4] This interface is critical in governing protein and metabolite traffic [5,6] since haustoria are thought to secrete a suite of proteins, some of which are aimed at suppressing host defence responses that may be triggered by the fungus when it penetrates the plant cell wall or at establishing the feeding interaction. The fungus colonizes the plant and within 7 days can produce uredinia (pustules) containing asexual urediniospores which are released and give rise to new rounds of infection

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.