Abstract
The frequency-division duplex (FDD) nodes use two separate frequency bands (separated by a guard band) for transmission and reception, thus enabling the full-duplex (FD) communication. On the other hand, the use of directional FDD nodes in multihop wireless network offers the advantages of larger transmission range, better link reliability, and spatial reuse, resulting in a much higher throughput and superior interference mitigation. However, the multihop FDD communication partitions the nodes in two classes (or genders) wherein the nodes of the same class (or gender) in a neighborhood cannot communicate with each other. This can seriously impact the availability of neighboring nodes for communication, and lead to disconnected nodes (or regions) in the network. In this paper, an algorithm is presented to assign the appropriate genders to these nodes in a multi-hop network such that each node is able to communicate with its multiple 1-hop neighbors, located in different directions. Our simulation results demonstrate that approximately half of the neighbors of each node are of the opposite gender and they are distributed in different directions, thus enabling robust, multipath, and high throughput communication in the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.