Abstract

The formation of gel particles from alginate and ι-carrageenan was studied through a novel pathway of formation via an amorphous spray-dried intermediate. Dried biopolymer particles were suspended in solutions of different Ca 2+ concentration. Particle size ranges and microscopic observation demonstrated that a range of swelling behaviour could be induced, with lower calcium concentrations resulting in more expanded particles, until a lower limit is reached below which particles initially dissolve. For the same calcium charge stoichiometry, larger swollen gel particles were obtained for alginate than for ι-carrageenan. The ability to produce a range of swollen biopolymer gel particle sizes, on the order of 1–600 μm, is attributed to the balance between gelation and dissolution kinetics, with fast gelation kinetics and slow dissolution promoting production of small gel particles whilst fast dissolution with slow gelation leads to larger gel particles. By controlling the solution environment in which rehydration is carried out, it is therefore possible to produce particles with desired degrees of swelling from a single starting material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.