Abstract
A rapid and sensitive method to detect single-walled carbon nanotubes (SWNTs) in biological samples is presented. The method uses polyacrylamide gel electrophoresis (PAGE) followed by quantification of SWNT bands. SWNTs dispersed in bovine serum albumin (BSA) were used to develop the method. When BSA-SWNT dispersions were subjected to sodium dodecyl sulfate (SDS)-PAGE, BSA passed through the stacking gel, entered the resolving gel, and migrated toward the anode as expected. The SWNTs, however, accumulated in a sharp band at the interface between the loading well and the stacking gel. The intensities from digitized images of these bands were proportional to the amount of SWNTs loaded onto the gel with a detection limit of 5 ng of SWNTs. To test the method, normal rat kidney (NRK) cells in culture were allowed to take up SWNTs upon exposure to medium containing various concentrations of BSA-SWNTs for different times and temperatures. The SDS-PAGE analyses of cell lysate samples suggest that BSA-SWNTs enter NRK cells by fluid-phase endocytosis at a rate of 30 fg/day/cell upon exposure to medium containing 98 microg/mL SWNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.