Abstract
Although glial cell line-derived neurotrophic factor (GDNF) and microRNAs (miRNAs) have been shown to regulate mammalian oocyte maturation, little is known about their effects on human oocyte maturation and the underlying molecular mechanisms. To examine the effects of GDNF on both nuclear and cytoplasmic maturation in cultured immature human oocytes and to investigate the involvement of miRNAs in GDNF-induced oocyte maturation. A total of 200 human immature oocytes were used to evaluate the effects of GDNF on oocyte maturation. The involvement of miRNAs in GDNF-induced oocyte maturation was identified by comparing the miRNA expression profiles of cumulus cells (CCs) either with or without GDNF stimulation. An in vitro fertilization center at the Women's Hospital, Zhejiang University School of Medicine. Agilent human miRNA (8*60K) arrays were used to examine the miRNA expression patterns of human CCs either with or without GDNF stimulation. miR-145-5p inhibitor and mimic transfections were performed to study downstream gene expression in human CCs. During the in vitro maturation process, GDNF significantly increased the percentage of metaphase II-stage oocytes and downregulated the expression of miR-145-5p in cultured human CCs. Expression of miR-145-5p in CCs is negatively correlated with oocyte maturation. miR-145-5p mimic significantly decreased the expression of GDNF family receptor-α1, ret proto-oncogene, and epidermal growth factor receptor, whereas miR-145-5p inhibitor reversed these effects. GDNF treatment inhibited cell apoptosis in cultured CCs, and this suppressive effect was reversed by transfection with the miR-145-5p mimic. Downregulation of miR-145-5p may contribute to GDNF-induced enhancement of oocyte maturation and of cell viability against cell apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.