Abstract

We previously showed that sustained exposure to febrile-range hyperthermia (FRH) for 24 h caused an increase in circulating granulocyte colony-stimulating factor (G-CSF) levels and a peripheral neutrophilia in mice (Hasday J, Garrison A, Singh I, Standiford T, Ellis G, Rao S, He JR, Rice P, Frank M, Goldblum S, and Viscardi R. Am J Pathol 162: 2005-2017, 2003). In this study, we utilized a conscious temperature-clamped mouse model to analyze the kinetics of G-CSF expression and peripheral neutrophil expansion and the contributions of FRH-induced G-CSF expression, glucocorticoid generation, and catecholamine-induced neutrophil demargination. In conscious mice housed at an ambient temperature of 34.5 degrees C, core temperature rapidly equilibrated at 39.5-40 degrees C. Peripheral neutrophil counts increased 2-fold after 24-h exposure to hyperthermia, peaked at 3.6-fold baseline levels after 36-h exposure to FRH, and returned to baseline levels after 42 h of sustained hyperthermia. Plasma G-CSF levels were increased by 6.8-fold after 24 h and peaked at 40-fold baseline levels after 36 h in the hyperthermic mice. Plasma corticosterone levels peaked at 3.3-fold baseline levels after 30-h sustained hyperthermia and returned to baseline by 42 h. Immunoneutralization of G-CSF blocked FRH-induced peripheral neutrophilia, but blockade of the glucocorticoid receptor with mifepristone failed to modify FRH-induced neutrophilia. Epinephrine induced similar increases in peripheral blood absolute neutrophil counts in euthermic mice (2.2-fold increase) and mice exposed to FRH for 36 h (1.8-fold increase). Collectively, these data suggest that FRH-induced expression of G-CSF drives the sustained peripheral neutrophilia that occurs during sustained (36 h) hyperthermia, whereas glucocorticoid generation and catecholamine-induced demargination play little role in this response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.