Abstract

Base composition varies among and within eukaryote genomes. Although mutational bias and selection have initially been invoked, more recently GC-biased gene conversion (gBGC) has been proposed to play a central role in shaping nucleotide landscapes, especially in yeast, mammals, and birds. gBGC is a kind of meiotic drive in favor of G and C alleles, associated with recombination. Previous studies have also suggested that gBGC could be at work in grass genomes. However, these studies were carried on third codon positions that can undergo selection on codon usage. As most preferred codons end in G or C in grasses, gBGC and selection can be confounded. Here we investigated further the forces that might drive GC content evolution in the rice genus using both coding and noncoding sequences. We found that recombination rates correlate positively with equilibrium GC content and that selfing species (Oryza sativa and O. glaberrima) have significantly lower equilibrium GC content compared with more outcrossing species. As recombination is less efficient in selfing species, these results suggest that recombination drives GC content. We also detected a positive relationship between expression levels and GC content in third codon positions, suggesting that selection favors codons ending with G or C bases. However, the correlation between GC content and recombination cannot be explained by selection on codon usage alone as it was also observed in noncoding positions. Finally, analyses of polymorphism data ruled out the hypothesis that genomic variation in GC content is due to mutational processes. Our results suggest that both gBGC and selection on codon usage affect GC content in the Oryza genus and likely in other grass species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.