Abstract

To overcome the issue of UV-light response character of Bi2O2CO3 due to its wide band gap, we primarily attempted to understand the possibility of improving the photocatalytic activity of Bi2O2CO3via g-C3N4 surface-decoration by the theoretical calculation. Subsequently, g-C3N4 surface-decorated Bi2O2CO3 was successfully prepared via a facile hydrothermal method. It was found that the g-C3N4 surface-decorated Bi2O2CO3 samples exhibited enhanced activities for the photodegradation of tetracycline compared with pure Bi2O2CO3 upon simulated solar light irradiation. Among them, the 10 wt% g-C3N4 surface-decorated Bi2O2CO3 sample showed the highest photocatalytic efficiency. First principle calculation and experimental data confirmed that the charge transfer at the interface between g-C3N4 and Bi2O2CO3 could significantly suppress the recombination of photo-generated electron-holes pairs, thus improving the photocatalytic performance. The proposed mechanism for the enhanced photocatalytic activity was also discussed. Moreover, the photodegradation of antibiotics over g-C3N4 surface-decorated Bi2O2CO3 was also performed in actual water matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.