Abstract

This paper presents the derivation, validation and illustration of a generalised beam theory (GBT) formulation intended to perform first-order and buckling analyses of arbitrary thin-walled members, namely members with cross-sections that combine closed cells with open branches. Following a brief overview of the so-called “conventional GBT formulation”, as well as of the available extensions for different specific cross-section types, the paper addresses in detail the modifications that must be incorporated into the GBT cross-section analysis procedure to handle the simultaneous presence of closed cells and open branches. The proposed formulation is then employed to analyse the first-order and buckling behaviours of thin-walled members (mostly beams) with complex cross-sections. For validation purposes, the GBT-based numerical results are compared with values yielded by shell finite element and finite strip analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.