Abstract

Dissolved gas analysis (DGA) is widely used for oil-immersed power transformers as a conventional fault diagnosis tool. However, interpretation criteria from DGA assessment often depends on empirical discrimination from a specialist, which can render unreliable or ambiguous diagnoses. Intelligent fault classification algorithms can be implemented to conquer uncertainty in conventional methods, and which require feature learning of transformer condition information data rather than expert experience. In this paper, a Gaussian process multi-classification (GPMC) method is proposed, which uses multiclass recognition with a Gaussian process (GP) and renders an output with a probabilistic interpretation rather than a deterministic guess. The method is investigated using large-scale DGA field datasets to improve diagnostic accuracy and presents reliable incipient fault diagnosis ability. A kernel-based learning algorithm and versatile artificial intelligence (AI) methods, (support vector machine (SVM), artificial neural network (ANN), K-nearest neighbors (KNN), decision tree and logistic regression (LR)) have been used to obtain comparative classification accuracy in comparison to the proposed method. Additional comparison is demonstrated between conventional DGA and AI methods. The effectiveness and robustness of the proposed GPMC method are confirmed by experimental accuracy >95%, which illustrates that the proposed method is able to provide superior and reliable diagnoses for operational transformer faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.