Abstract

This paper introduces a new algorithm to quantify the P-wave morphology time course with the aim of anticipating as much as possible the onset of paroxysmal atrial fibrillation (PAF). The method is based on modeling each P-wave with a single Gaussian function and analyzing the extracted parameters variability over time. The selected Gaussian approaches are associated with the amplitude, peak timing, and width of the P-wave. In order to validate the algorithm, electrocardiogram segments 2 h preceding the onset of PAF episodes from 46 different patients were assessed. According to the expected intermittently disturbed atrial conduction before the onset of PAF, all the analyzed Gaussian metrics showed an increasing variability trend as the PAF onset approximated. Moreover, the Gaussian P-wave width reported a diagnostic accuracy around 80% to discern between healthy subjects, patients far from PAF, and patients less than 1 h close to a PAF episode. This discriminant power was similar to those provided by the most classical time-domain approach, i.e., the P-wave duration. However, this newly proposed parameter presents the advantage of being less sensitive to a precise delineation of the P-wave boundaries. Furthermore, the linear combination of both metrics improved the diagnostic accuracy up to 86.69%. In conclusion, morphological P-wave characterization provides additional information to the metrics based on P-wave timing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.