Abstract

We derive necessary and sufficient conditions for arbitrary multi--mode (pure or mixed) Gaussian states to be equivalent under Gaussian local unitary operations. To do so, we introduce a standard form for Gaussian states, which has the properties that (i) every state can be transformed into its standard form via Gaussian local unitaries and (ii) it is unique and (iii) it can be easily computed. Thus, two states are equivalent under Gaussian local unitaries iff their standard form coincides. We explicitly derive the standard form for two-- and three--mode Gaussian pure states. We then investigate transformations between these classes by means of Gaussian local operations assisted by classical communication. For three-mode pure states, we identify a global property that cannot be created but only destroyed by local operations. This implies that the highly entangled family of symmetric three--mode Gaussian states is not sufficient to generated all three-mode Gaussian states by local Gaussian operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.