Abstract
Markov chain Monte Carlo (MCMC) methods are a cornerstone of Bayesian inference and stochastic simulation. The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that relies on the simulation of a stochastic differential equation (SDE) whose stationary distribution is the desired target density using the Euler-Maruyama algorithm and accounts for simulation errors using a Metropolis step. In this paper we propose a modification of the MALA which uses Gaussian assumed density approximations for the integration of the SDE. The effectiveness of the algorithm is illustrated on simulated and real data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.