Abstract

Initial value representations (IVRs) of semiclassical (SC) theory provide a general approach for adding quantum mechanical effects to classical molecular dynamics simulations of large molecular systems. Of the various versions of SC-IVR methodology for evaluating time correlation functions, the Fourier transform forward-backward (FB) approach is the simplest one that is able to describe true quantum coherence effects, so it is of considerable importance to find efficient and systematic ways for implementing it. It is shown in this paper that a Gaussian approximation for the "structure function"-the dependence of the correlation function on the (typically) momentum jump parameter-provides an efficient and accurate way for doing so. The approach is illustrated by an application to the time-dependent radial distribution function of I(2) (after photoexcitation) in a cluster of (up to 16) argon atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.