Abstract
We present a gauged twistor model of a free massive spinning particle in four-dimensional Minkowski space. This model is governed by an action, referred to here as the gauged generalized Shirafuji (GGS) action, that consists of twistor variables, auxiliary variables, and $U(1)$ and $SU(2)$ gauge fields on the one-dimensional parameter space of a particle's worldline. The GGS action remains invariant under reparametrization and the local $U(1)$ and $SU(2)$ transformations of the relevant variables, although the $SU(2)$ symmetry is nonlinearly realized. We consider the canonical Hamiltonian formalism based on the GGS action in the unitary gauge by following Dirac's recipe for constrained Hamiltonian systems. It is shown that just sufficient constraints for the twistor variables are consistently derived by virtue of the gauge symmetries of the GGS action. In the subsequent quantization procedure, these constraints turn into simultaneous differential equations for a twistor function. We perform the Penrose transform of this twistor function to define a massive spinor field of arbitrary rank, demonstrating that the spinor field satisfies generalized Dirac-Fierz-Pauli equations with $SU(2)$ indices. We also investigate the rank-one spinor fields in detail to clarify the physical meanings of the $U(1)$ and $SU(2)$ symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.