Abstract

We present a systematic treatment of the initial conditions and evolution of cosmological perturbations in a universe containing photons, baryons, neutrinos, cold dark matter, and a scalar quintessence field. By formulating the evolution in terms of a differential equation involving a matrix acting on a vector comprised of the perturbation variables, we can use the familiar language of eigenvalues and eigenvectors. As the largest eigenvalue of the evolution matrix is fourfold degenerate, it follows that there are four dominant modes with a nondiverging gravitational potential at early times, corresponding to adiabatic, cold dark matter isocurvature, baryon isocurvature and neutrino isocurvature perturbations. We conclude that quintessence does not lead to an additional independent mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.