Abstract

We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark ($q\overline{q}$) bound states is emphasized. An essential aspect of our formulation is that it applies to any underlying quantum field theoretic model of the $q\overline{q}$ system, and not just to models, like exact QCD, where the quark self-energy $\mathrm{\ensuremath{\Sigma}}$ couples to the electromagnetic field solely via dressed quark propagators. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound-state wave function, the final-state interaction $q\overline{q}$ $t$ matrix, the dressed quark propagator, and dressed quark currents, are determined by a universal Bethe-Salpeter kernel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.