Abstract
Electrical transport and resistance noise spectroscopy measurements are performed on individual, single crystalline Bi2S3 nanowires in the field-effect geometry. The nanowires exhibit n-type conduction and device characteristics such as activation energy, ON/OFF ratio, and mobility are calculated over a temperature range of 120–320 K and at several bias values. The noise magnitude is measured between 0.01 and 5 Hz at several gate voltages as the device turns from it's OFF to ON state. The presence of mid-gap states which act as charge traps within the band gap can potentially explain the observed transport characteristics. Sulfur vacancies are the likely origin of these mid-gap states which makes Bi2S3 nanowires appealing for defect engineering as a means to enhance its optoelectronic properties and also to better understand the important role of defects in nanoscale semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.