Abstract

Control of the type and density of charge carriers in graphene is essential for its implementation into various practical applications. Here, we demonstrate the gate-tunable doping effect of adsorbed piperidine on graphene. By gradually increasing the amount of adsorbed piperidine, the graphene doping level can be varied from p- to n-type, with the formation of p-n junctions for intermediate coverages. Moreover, the doping effect of the piperidine can be further tuned by the application of large negative back-gate voltages, which increase the doping level of graphene. In addition, the electronic properties of graphene are well preserved due to the noncovalent nature of the interaction between piperidine and graphene. This gate-tunable doping offers an easy, controllable, and nonintrusive method to alter the electronic structure of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.