Abstract

Abstract We used GATE simulation to study the effect of the coincidence time window (CTW) along with the block gap and the intercrystal gap on the count rate performance and the spatial resolution of the Biograph™ mCT 20 Excel. We ran simulations on our local cluster to reduce computation time. The task was split into several jobs that were then triggered simultaneously on the cluster nodes. The BiographTM mCT 20 Excel was validated using the NEMA NU 2-2012 protocol. Our results showed good agreement with experimental data. The simulated sensitivity, peak true count rate, peak noise equivalent count rate (NECR), and scatter fraction showed agreement within 3.62%, 5.77%, 0.6%, and 2.69%, respectively. In addition, the spatial resolution agreed within <0.51 mm. The results showed that a decrease in the coincidence time window and the block gap and an increase in the intercrystal gap increase the count rate performance and improve the spatial resolution. The results also showed that decreasing the coincidence time window increased the NECR by 27.37%. Changing the intercrystal gap from 0 to 0.2 mm and the block gap and from 4 to 0.4 mm increased the NECR by 5.53% and improved the spatial resolution at 1 cm by 2.91% and that at 10 cm by 3.85%. The coincidence time window, crystal gap, and block gap are important parameters with respect to improving the spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.