Abstract

When thinned down to the atomic scale, many layered van der Waals materials exhibit an interesting evolution of their electronic properties, whose main aspects can be accounted for by changes in the single-particle bandstructure. Phenomena driven by interactions are also observed, but identifying experimentally systematic trends in their thickness dependence is challenging. Here, we explore the evolution of gate-induced superconductivity in exfoliated MoS2 multilayers ranging from bulk-like to individual monolayers. We observe a clear transition for all thicknesses down to the ultimate atomic limit, providing the first demonstration of gate-induced superconductivity in atomically thin exfoliated crystals. Additionally, we characterize the superconducting state by measuring the critical temperature TC and magnetic field BC in a large number of multilayer devices while decreasing their thickness. We find that the superconducting properties exhibit a pronounced reduction in TC and BC when going from bilayers to monolayers, for which we discuss possible microscopic mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.