Abstract

Interpretation of a three-dimensional (3-D) seismic dataset from offshore of Mauritania reveals a shear zone at the base of a partially developed slope failure. The shear zone is at a depth of ~220m below the seabed, immediately above a hydrate bottom simulating reflector (BSR). We propose that a paleo-gas accumulation trapped below hydrate was the primer for what would have been a substantial submarine slope failure of ~220m thickness, covering ~50km2. This is based on the following observations: (a) the shear surface is, at the level of seismic resolution, coincident with some present gas accumulations located immediately below sediment that hosts hydrate; (b) there are remnants of a more extensive paleo gas accumulation that would have generated sufficient buoyancy pressure for the shear surface to be critically stressed and therefore primed the failure; (c) seismic pipes are a common seismic feature within the studied succession but absent in the area of the shear zone, which supports the hypothesis that a high gas column could have existed. This is a rare example of a shear zone that did not lead to the complete development of a slope failure. It provides the first seismic evidence that the buoyancy effect of gas below the hydrate rather than the hydrate dissociation is also a viable mechanism for large-scale slope failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.