Abstract

Alkanolamine processes are used in the industry to remove acid gases, like CO 2, H 2S and other sulphur components, from natural gas and industrial gas streams. In this process the acid components react with the basic alkanolamine solution via an exothermic, reversible reaction in a gas/liquid absorber. The composition of these amine solutions is continuously changed to optimise the (selective) removal of the several acid components. For the design of gas treating equipment accurate mass transfer, reaction kinetics and solubility data of acid gases in aqueous alkanolamine solutions are required. In this paper new solubility data of H 2S and CO 2 in aqueous MDEA at different conditions encountered in modern gas treating facilities are presented. The experimental pressure and temperature were varied from 6.9 to 69 bar (methane was used as make-up gas) and from 10 to 25 °C respectively. These new solubility data were evaluated and correlated with an Electrolyte Equation of State Model (EOS) as originally proposed by Fürst and Renon [Fürst, W., Renon, H., 1993. Representation of Excess Properties of Electrolyte Solutions Using a New Equation of State. AIChE J., 39 (2), pp. 335.]. The application of Equation of State Models for the prediction of VLE data for reactive, ionic systems is a rather new development in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.