Abstract

The present work develops a MOS-based e-nose with sensors modified with zeolite Y. For this purpose, the following SnO2 doped with Pd and/or Pt have been prepared: M1 ((0.25 Pd/0.75 Pt)/SnO2), M2 ((0.50 Pd/0.50 Pt)/SnO2), M3 ((0.75 Pd/0.25 Pt)/SnO2), Pd/SnO2, and Pt/SnO2, at the total concentrations of the noble metals of 0.1% and 0.2% for use in gas sensors and be part of the electronic nose. Then, the sensors were assembled with the oxides using the screen printing method. Different electronic noses of four sensors were prepared by combining tin oxides doped with palladium and/or platinum and zeolite Y. The physicochemical characterization of oxides using FRX, FTIR, sorption of N2, and RAMAN has been performed. Measurements for the detection of wine volatile compounds such as ethanol, methanol, 1-phenyl ethanol, propionic acid, and acetic acid were carried out with these sensors located in a gas chamber and using a program that includes the Labview software, which serves to automate the sensing process. It was found that the sensors modified with zeolite were the ones that in general had higher detections of volatile compounds and PCAs showed positive correlations only for ethanol and the mixture of ethanol at 12% and methanol at 3%. This is related to better detection of these sensors.

Highlights

  • Academic Editor: Jean-Marie Nedelec e present work develops a MOS-based e-nose with sensors modified with zeolite Y

  • The following SnO2 doped with Pd and/or Pt have been prepared: M1 ((0.25 Pd/0.75 Pt)/SnO2), M2 ((0.50 Pd/0.50 Pt)/SnO2), M3 ((0.75 Pd/0.25 Pt)/SnO2), Pd/SnO2, and Pt/SnO2, at the total concentrations of the noble metals of 0.1% and 0.2% for use in gas sensors and be part of the electronic nose. en, the sensors were assembled with the oxides using the screen printing method

  • Different electronic noses of four sensors were prepared by combining tin oxides doped with palladium and/or platinum and zeolite Y. e physicochemical characterization of oxides using FRX, FTIR, sorption of N2, and RAMAN has been performed

Read more

Summary

Introduction

Academic Editor: Jean-Marie Nedelec e present work develops a MOS-based e-nose with sensors modified with zeolite Y. For this purpose, the following SnO2 doped with Pd and/or Pt have been prepared: M1 ((0.25 Pd/0.75 Pt)/SnO2), M2 ((0.50 Pd/0.50 Pt)/SnO2), M3 ((0.75 Pd/0.25 Pt)/SnO2), Pd/SnO2, and Pt/SnO2, at the total concentrations of the noble metals of 0.1% and 0.2% for use in gas sensors and be part of the electronic nose. E e-nose sensors are based on different types of materials. The food industry needs to detect if the product is spoiled, adulterated, etc For this reason, we consider the base material of the sensor and some modification that allows improving its selectivity. Journal of Chemistry the passage of some compounds to the SnO2 surface of the sensor and allow the detection of a target molecule, such as ethanol

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.