Abstract

We report the first gas-phase vibrational spectra of the hydrocarbon ions C3H+ and C3H2+. The ions were produced by electron impact ionization of allene. Vibrational spectra of the mass-selected ions tagged with Ne were recorded using infrared predissociation spectroscopy in a cryogenic ion trap instrument using the intense and widely tunable radiation of a free electron laser. Comparison of high-level quantum chemical calculations and resonant depletion measurements revealed that the C3H+ ion is exclusively formed in its most stable linear isomeric form, whereas two isomers were observed for C3H2+. Bands of the energetically favored cyclic c-C3H2+ are in excellent agreement with calculated anharmonic frequencies, whereas for the linear open-shell HCCCH+ (2Πg) a detailed theoretical description of the spectrum remains challenging because of Renner–Teller and spin–orbit interactions. Good agreement between theory and experiment, however, is observed for the frequencies of the stretching modes for which an anharmonic treatment was possible. In the case of linear l-C3H+, small but non-negligible effects of the attached Ne on the ion fundamental band positions and the overall spectrum were found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.