Abstract

Boron has practical applications as an advanced fuel in propulsion systems due to its high energy content. The combustion of boron in the presence of hydrocarbon fuels is a complex problem involving heterogeneous particle oxidation followed by gas-phase kinetics of the volatilized boron species. In this study, we have modeled the high-temperature gas-phase combustion chemistry of the B/O/H/C system. We have examined the effects of recent experimental gas-phase kinetic measurements of several of the critical reaction rates and theoretical thermodynamic and transition state calculations on the previous model of boron combustion. Additional reactions that critically affect the combustion efficiency are identified for future experimental and theoretical study. The role of boron oxyhydrides, which are metastable species, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.