Abstract
The equilibria [2]: [Formula: see text] for R = CH3, C2H5, and C6H5 were studied in a pulsed electron beam high ion source pressure mass spectrometer. van't Hoff plots led to ΔH2 values: (CH3), 24.6; (C2H5), 22.7; (C6H5), 21.9 kcal/mol. ΔHf(RC(OH)2+) were obtained from gas phase basicity ladders combined with the new ΔHf(t-butyl+) = 163 kcal/mol (Beauchamp). The ΔHf(RC(OH)2+) were: (CH3), 71.3; (C2H5), 63.6; (C6H5), 95.5 kcal/mol. Combination of ΔH2 with ΔHf(RC(OH)2+) leads to ΔHf(RCO+): (CH3), 153.7; (C2H5), 144; (C6H5), 174.6 kcal/mol. These results are in agreement with selected data from appearance potentials. The energies and structures of the participants in reaction [2] were calculated by MINDO/3 and STO-3G. MINDO/3 gave good agreement with ΔH2. The establishment of the equilibria [2] was unusually slow. A study of the kinetics revealed that k2f is approximately third order, unusually small, and has an unusually large negative temperature coefficient. Furthermore, reaction [2] was found to be catalyzed by RCOOH. An explanation of these observations is given by assuming that the proton shift RCO(OH2)+ → RC(OH)2+ has a large activation energy barrier in the gas phase. This barrier is removed by formation of a hydrogen bonded complex with RCOOH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.