Abstract

The use of gas-phase electron-impact activation of metalorganic complexes to facilitate atomic layer depositions (ALD) was tested for the case of (methylcyclopentadienyl)Pt(IV) trimethyl (MeCpPtMe3) on silicon oxide films. Uptake enhancements of more than 1 order of magnitude were calculated from X-ray photoelectron spectroscopy (XPS) data. On the basis of the measured C:Pt ratios, the surface species were estimated to mainly consist of MeCpPt moieties, likely because of the prevalent formation of [MeCpPtMe x- nH]+ ions after gas-phase ionization (as determined by mass spectrometry). Counterintuitively, more extensive adsorption was observed on thick SiO2 films than on the native thin SiO2 film that forms on Si(100) wafers, despite the former having virtually no surface OH groups. The adsorption of MeCpPt fragments onsilicon oxide surfaces was determined by density functional theory (DFT) calculations to be highly exothermic and to favor attachment to Si-O-Si bridge sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.