Abstract

The charging behavior of molecular Au clusters protected by alkanethiolate (SCnH2n+1=SCn) is, under electrochemical conditions, significantly affected by the penetration of solvents and electrolytes into the SCn layer. In this study, we estimated the charging energy EC(n) associated with [PtAu24(SCn)18]-+e-→[PtAu24(SCn)18]2- (n=4, 8, 12, and 16) in vacuum using mass-selected gas-phase anion photoelectron spectroscopy of [PtAu24(SCn)18]z (z=-1 and -2). The EC(n) values of PtAu24(SCn)18 in vacuum are significantly larger than those in solution and decrease with n in contrast to the behavior reported for Au25(SCn)18 in solution. The effective relative permittivity (ϵm*) of the SCn layer in vacuum is estimated to be 2.3-2.0 based on the double-concentric-capacitor model. Much smaller ϵm* values in vacuum than those in solution are explained by the absence of solvent/electrolyte penetration into the monolayer. The gradual decrease of ϵm* with n is ascribed to the appearance of an exposed surface region due to the bundle formation of long alkyl chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.