Abstract

We report on a gas chromatography-mass spectrometry (GC-MS) method for the quantification of nitrite in biological fluids without preceding derivatization. This method is based on the solvent extraction with ethyl acetate of nitrous acid (HONO, pK(a) = 3.29), i.e., HO(14)NO and (15)N-labeled nitrous acid (HO(15)NO) which was supplied as the sodium salt of (15)N-labeled nitrite and served as the internal standard. HO(14)NO and HO(15)NO react within the injector (at 300 degrees C) of the gas chromatograph with the solvent ethyl acetate to form presumably unlabeled and (15)N-labeled acetyl nitrite, respectively. Under negative ion chemical ionization (NICI) conditions with methane as the reagent gas, these species ionize to form O(14)NO(-) (m/z 46) and O(15)NO(-) (m/z 47), respectively. Quantification is performed by selected ion monitoring of m/z 46 for nitrite and m/z 47 for the internal standard. Nitrate at concentrations up to 20 mM does not interfere with nitrite analysis in this method. The GC-MS method was validated for the quantification of nitrite in aqueous buffer, human urine (1 mL, acidification) and saliva (0.1-1 mL, acidification), and hemolysates. The method was applied in studying reactions of nitrite (0-10 mM) with oxyhemoglobin ( approximately 6 mM) in lysed human erythrocytes (100 microL aliquots, no acidification).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.