Abstract

ABSTRACTThe prediction of time-changing volatility is an important task in the modeling of financial data. In the paper, a comprehensive analysis of the mean return and conditional variance of SSE380 index is performed to use GARCH, EGARCH and TGARCH models with Normal innovation and Student's t innovation. Conducting a bootstrap simulation study which shows the Model Confidence Set (MCS) captures the superior models across a range of significance levels. The experimental results show that, under various loss functions, the GARCH using Student's t innovation model is the best model for volatility predictions of SSE380 among the six models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.