Dust in galaxies can be mapped by either the FIR/sub-mm emission, the optical or infrared reddening of starlight, or the extinction of a known background source. We compare two dust extinction measurements for a set of fifteen sections in thirteen nearby galaxies, to determine the scale of the dusty ISM responsible for disk opacity: one using stellar reddening and the other a known background source. In our earlier papers, we presented extinction measurements of 29 galaxies, based on calibrated counts of distant background objects identified though foreground disks in HST/WFPC2 images. For the 13 galaxies that overlap with the Spitzer Infrared Nearby Galaxies Survey (SINGS), we now compare these results with those obtained from an I-L color map. Our goal is to determine whether or not a detected distant galaxy indicates a gap in the dusty ISM, and hence to better understand the nature and geometry of the disk extinction. We find that distant galaxies are predominantly in low-extinction sections marked by the color maps, indicating that their number depends both on the cloud cover of {\it Spitzer}-resolved dust structures --mostly the spiral arms--and a diffuse, unresolved underlying disk. We note that our infrared color map (E[I-L]) underestimates the overall dust presence in these disks severely, because it implicitly assumes the presence of a dust screen in front of the stellar distribution.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call