Abstract

Preparation of the future materials workforce consistent with major imperatives rooted in integrated computational materials engineering (ICME) and the materials genome initiative (MGI) is most effectively pursued within the vision of a materials innovation ecosystem that spans across conventional engineering, science, and computing disciplines. The ICME foundation integrates principles of materials science with computational methods, including increasing reliance on modern data science methods that are savvy to digital information that recognizes hierarchical material structure and the need for correlative relations for process-structure and structure-property relations. We consider gaps in academic research and education programs related to systems engineering, uncertainty quantification of both experiments and computation, and data science methods. Barriers to the introduction of materials data science are discussed, as well as opportunities for innovation in educating the future MGI and ICME workforce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.