Abstract

We report on the response of the electronic continuum from inelastic light-scattering experiments over an extended energy range between 1.970 and 4.504 eV in the superconducting state of Bi2Sr2CaCu2O8. The formation of a substantial Raman feature at shifts below twice the superconducting gap as well as the additional weight above this energy are found to be strongly dependent on the incident photon energy. For excitation wavelengths observed in ultraviolet, we find an enhancement of the integrated spectral weight below T(c). The resulting composite feature shows three distinct resonances at 2.5, 3.3, and 3.8 eV. We strongly suggest that the superconductivity-induced changes are the result of both the opening of a superconducting gap and the appearance of a collective mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.