Abstract

The rate of gamma-ray bursts (GRBs) in the Galaxy is estimated assuming that these events result from the formation of rapidly rotating Kerr black holes during the core collapse of massive, helium, Wolf-Rayet secondary components in very close binary systems. This process brings about rapid rotation of the cores of such Wolf-Rayet stars, inevitably resulting in the formation of Kerr black holes during type Ib,c supernovae. The current rate of formation of Kerr black holes (GRBs) in the Galaxy is about 3×10−5/year. Collimation of the gamma-ray radiation into a small solid angle (about 0.1–0.01 sr) brings this rate into consistency with the observed rate of GRBs, estimated to be 10−6–10−7/year. Possible immediate progenitors of GRBs are massive X-ray binaries with X-ray luminosities of 1038–1040 erg/s. Due to the short lifetimes of the progenitors and the very high brightnesses of GRBs, the GRB rate can provide information about the history of star formation in the Universe on the Hubble time scale. A model in which the star-formation rate is determined by the conditions for ionization of the interstellar gas, whose density and volume are determined by supernovae, yields a Galactic star-formation history that can be viewed as representing the history of star formation in the Universe. The theoretical history of star formation is in satisfactory agreement with the history reconstructed from observations. The theoretical model for the history of star formation in the Galaxy can also be used to assess the influence of dust on optical observations of supernovae and GRBs in galaxies of various ages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.