Abstract

Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies. Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.